From Local to Global: A Case Study in External Validity

Rajeev Dehejia
New York University

joint work with

Crisitian Pop-Eleches
Columbia University

Cyrus Samii
New York University
Introduction

questions

Can an experiment from location A (B, C,...) be accurately extrapolated to location X (Y,Z,...)?

• How do we evaluate success?

• What is the the best estimator?
Introduction

our goal

• To build up a set of empirical case studies or data sandboxes on empirical validity...

...by finding experiments replicated in a sufficient number of times and places
... and using them in an empirical exploration of aspects of external validity.

• An empirically inductive epistemology.
Introduction

our first effort

• Apply the Angrist-Evans (1998) (same sex of the first two children increases the probability of further children and reduces the probability of the mother working) to International IPUMS data on 166 country-years.

• To develop a framework and present initial results on external validity.
In 2010, our sample of countries represents about 5 billion people (world population ≈ 7 billion).

Our working sample ≈ 550 million (women, aged 21-35, ≥2 kids)
Introduction

±

• Disadvantages.
 – Not a policy experiment.
 – Not an RCT.
 – Represents country-year level variation (for now).
 – External validity of external validity.

• But with the leap of faith some advantages.
 – Nationally representative data.
 – Wide geographical and temporal variation.
 ➤ Can address empirically a wide range of questions on external validity.
Question 1

• How do differences between reference and target locations drive extrapolation error.
 – We call this the extrapolation error (or X) function.
Question 1

set-up

- $T = 0, 1$ (control vs treatment of interest)
- Potential outcomes $Y(1), Y(0)$
- D
 - $= 0$, settings where we have experimental “reference settings”
 - $= 1$, settings where we wish to extrapolate, “target settings”
- A valid experiment:
 - Can be replaced by an observational study
Question 1

assumptions

(C1) Unconfounded location: that we have the information needed to characterize relevant differences between a reference and target contexts
 – Includes both micro covariates and experiment-level context variables

(C2) Common support: the range of values of covariates that characterize the target context are also observed reference context:
 – Particularly challenging for context characteristics

(C3) Functional form: that our estimator is sufficiently flexible to capture any heterogenous treatment effects
• Assume (C1), (C2), and (C3).
 – (C3) is readily satisfied by standard non-parametric estimators or by accepting linear approximations to non-linear functions.
 – (C2) is readily satisfied in our data, but testable.
 – We assume (C1) and then test for the validity of the assumption as described next.
Question 1

how we extrapolate

Compute the treatment effect in the reference location conditional on covariate values.

Use those estimates in the target location.

Reweight based on the covariate distribution in the target.
Question 1

the extrapolation error function

• Define the extrapolation error function as:
 • $X(\text{target covariates, reference covariates}) =$
 Extrapolated treatment effect
 – actual treatment effect

• If target covariates = reference covariates and $X \neq 0$, then (C1) has failed.

• For target covariates \neq reference covariates, $X()$ maps out the extrapolation error function and violation of (C2), common support
Question 1

\textit{x-function estimation: dyadic approach}

- Create all country-year pairs (A,X);
- Use A to predict treatment effect in X (using covariate reweighting);
- Compare to actual treatment effect in X to estimate extrapolation error;
- Note covariate differences between A and X.
Question 1

the estimated ε function

• Dyadic regressions (cont’d)
 – Given the set of bias vectors estimate a multivariate regression of the form:

 $$Extrapolation\ error = a + b\Delta W + e$$

 where regressions are weighted to accounted for estimated first stage and standard errors are clustered at the target country level.
 – Gives conditional extrapolation error function: the effect of one element of W conditional on others.
Average effect = 0.04
~ US effect 0.06
~ mean more kids 0.57
≈ 6% effect

Funnel plot: ATE vs se.
Expect 95% of points to be within standard error lines, if effect homogenous.

Cochran’s Q-test and weighted Shapiro-Francia tests reject constant treatment at any standard level.
Question 1

X function & education differences

- Treatment effect = 0.04
- $1 \sigma = 1$ on 4 pt ed scale
- $\epsilon = 0.08$

Test of unconfounded location assumption
Question 1

GDP per capita differences

Treatment effect = 0.04

1 σ = $10k

\[\epsilon = 0.09 \]
Question 1

LFP differences

Treatment effect = 0.04

\[1 \sigma = 0.2 \text{ LFP} \]

\[\epsilon = 0.2 \]

Mean prediction error +/- 2 se

-4 -2 0 2 4

Difference in LFP between target country and comparisons

Mean prediction error +/- 2 se
Question 1
within-region geographical distance

Treatment effect = 0.04
1 \(\sigma = 4800 \text{ km} \)
→ more than 10k km before significant effect
Question 1

temporal distance

Treatment effect = 0.04

\[1 \sigma = 10 \text{ years} \]

\[\varepsilon = 0.04 \]
Nonparametric Lasso

Appendix Figure 4: LASSO solution paths for series approximation interaction terms

Panel A: Full solution path for "more kids" interaction terms

Panel B: Full solution path for "economically active" interaction terms

Panel C: Zoom view of solution path for "more kids" interaction terms

Panel D: Zoom view of solution path for "economically active" interaction terms
Table 4: Lasso regression for *Having more children*

<table>
<thead>
<tr>
<th>Step</th>
<th>Cp</th>
<th>R-squared</th>
<th>Level of variable</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4625.279</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2498.7156</td>
<td>0.0003</td>
<td>Country-Year</td>
<td>log GDP per capita</td>
</tr>
<tr>
<td>3</td>
<td>2350.8823</td>
<td>0.0003</td>
<td>Country-Year</td>
<td>Age mother</td>
</tr>
<tr>
<td>4</td>
<td>1584.9652</td>
<td>0.0004</td>
<td>Country-Year</td>
<td>Education mother level3</td>
</tr>
<tr>
<td>5</td>
<td>1376.3483</td>
<td>0.0004</td>
<td>Individual</td>
<td>Education mother level3</td>
</tr>
<tr>
<td>6</td>
<td>1363.2034</td>
<td>0.0004</td>
<td>Country</td>
<td>Region 5</td>
</tr>
<tr>
<td>7</td>
<td>1300.66</td>
<td>0.0004</td>
<td>Individual</td>
<td>Education spouse level3</td>
</tr>
<tr>
<td>8</td>
<td>982.5631</td>
<td>0.0004</td>
<td>Individual</td>
<td>Education mother level2</td>
</tr>
<tr>
<td>9</td>
<td>984.0331</td>
<td>0.0004</td>
<td>Country</td>
<td>Region 6</td>
</tr>
<tr>
<td>10</td>
<td>880.924</td>
<td>0.0005</td>
<td>Country-Year</td>
<td>Age mother second born</td>
</tr>
<tr>
<td>11</td>
<td>878.0398</td>
<td>0.0005</td>
<td>Individual</td>
<td>Education spouse level4</td>
</tr>
<tr>
<td>12</td>
<td>834.6946</td>
<td>0.0005</td>
<td>Country</td>
<td>Region 4</td>
</tr>
<tr>
<td>13</td>
<td>787.947</td>
<td>0.0005</td>
<td>Individual</td>
<td>Age mother</td>
</tr>
<tr>
<td>14</td>
<td>788.1958</td>
<td>0.0005</td>
<td>Country</td>
<td>Decade 1980</td>
</tr>
<tr>
<td>15</td>
<td>731.6514</td>
<td>0.0005</td>
<td>Country</td>
<td>Region 7</td>
</tr>
<tr>
<td>16</td>
<td>701.0733</td>
<td>0.0005</td>
<td>Country-Year</td>
<td>Education spouse level3</td>
</tr>
<tr>
<td>17</td>
<td>681.3512</td>
<td>0.0005</td>
<td>Individual</td>
<td>Education spouse level2</td>
</tr>
<tr>
<td>18</td>
<td>541.2938</td>
<td>0.0005</td>
<td>Country</td>
<td>Decade 1970</td>
</tr>
<tr>
<td>19</td>
<td>489.2243</td>
<td>0.0005</td>
<td>Country</td>
<td>Decade 1990</td>
</tr>
</tbody>
</table>
Question 1

Conditional \in function more kids
Question 1

Conditional ϵ function more kids

Difference in mean education between target country and comparisons

Unconditional bias +/- se
Conditional bias +/- se

Difference in GDP per capita between target country and comparisons

Unconditional bias +/- se
Conditional bias +/- se
Question 2

- Where should we run experiments?
Question 2
Where to locate experiments? In the middle

Figure 19: Mean prediction error on percentile of comparison country composite treatment-effect predictor, using one site to predict all others

Notes: On the x-axis, each country, year is ranked based on its percentile of a composite treatment effect predictor. The composite predictor is a weighted average of country, year covariates weighted by their effect on the country, year treatment effect. The y-axis shows the mean prediction error from using the site on the x-axis to predict all other country, years. Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series, International (IPUMS, I).

Figure 20: Mean prediction error on average Mahalanobis distance of the comparison country-year to all target country-years

Notes: On the x-axis, each country, year is ranked based on its average Mahalanobis distance to all other country, years. The y-axis shows the mean prediction error from using the site on the x-axis to predict all other country, years. Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series, International (IPUMS, I).

Figure 21: Mean prediction error, given the first comparison site, on percentile of composite treatment-effect predictor covariate, using two sites to predict the others

Notes: On the x-axis, each country, year is ranked based on its percentile of a composite treatment effect predictor. The composite predictor is a weighted average of country, year covariates weighted by their effect on the country, year treatment effect. The y-axis shows the mean prediction error from using the site on the x-axis to predict all other country, years. Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series, International (IPUMS, I).

Figure 22: Mean prediction error, given the first comparison site, on average Mahalanobis distance of the comparison country-year to all target country-years, using two sites to predict others

Notes: On the x-axis, each country, year is ranked based on its average Mahalanobis distance to all other country, years. The y-axis shows the mean prediction error from using the site on the x-axis in addition to the first selected comparison site to predict all other country, years. Source: Authors’ calculations based on data from the Integrated Public Use Microdata Series, International (IPUMS, I).
Question 3

• Are individual (subject) or country-level (experiment) covariates more important? Some have argued that between-country variation will dominate issues of external validity, so that extrapolating across countries is doomed.
Question 3

more kids

Density estimate: extrapolation error

CDF: absolute extrapolation error

Panel A: Density estimate - prediction error

Panel B: CDF - absolute prediction error

Notes: The graph plots the density estimates of the prediction error and CDF of the absolute prediction error based on the procedure described in Section 9 of the paper. Source: Authors' calculations based on data from the Integrated Public Use Microdata Series International (IPUMSKI).
Question 4

economically active

Density estimate: extrapolation error

CDF: absolute extrapolation error

- Bias: economically active
- CDF: absolute bias: economically active
Question 4
rules of thumb

• If extrapolation is possible, how should we do it?
• Using the model?
• Or might rules of thumb suffice?
Out-of-sample accuracy: model vs rules-of-thumb for more kids

[Fixed target] [no sex selection]
Question 5

To experiment or extrapolate?

- Suppose a decision maker wants to make an evidence-based decision of whether or not to implement a treatment. The decision maker has a choice between using the existing evidence base versus generating new evidence by carrying out an experiment in the target context.
- Many loss functions possible.
- For now, assume that the decision maker will decide that the existing evidence is sufficient to determine policy if a 95% prediction interval surrounding the conditional mean prediction for the target site is entirely on one or another side of some critical threshold, c^*.
To experiment or extrapolate?

\[\text{Var}[\tau|X = X_0] = \text{Var}[\hat{\tau}(X)|X = X_0] + \text{Var}[\epsilon(X)|X = X_0]. \]

Notes: Solid line = experiment not warranted. Dashed line = experiment warranted.
To experiment or extrapolate?
Question 6

choice of estimators

• Work in progress!
• Evident that dyadic approach is not efficient.
• Matching more efficient, but computationally challenging.
• Machine learning is a new option.
• Our results suggestion that flexible methods tend to overfit context covariates.
Question 7

external validity of external validity

- Does any of this generalize to the situations?
- Expand the data set.
- Look at other policy experiments.
Question 7
external validity of external validity

429 country-years, stretching from 1787 to 2014
Conclusions

five prescriptions

• The reference and target setting must be similar ($< \frac{1}{2} \sigma$) along economically relevant dimensions.

• Experiment-level data proved key in extrapolating.

• A sufficiently large experimental evidence base is needed for reliable extrapolation.

• Accounting for treatment effect heterogeneity is essential in extrapolating the treatment effect.

• With sparse data, modeling treatment effect heterogeneity is important; in data-rich settings, rules of thumb might be sufficient.
The X-Team

Local to global: experiments
Rajeev Dehejia Kiki Pop-Eleches Cyrus Samii
(Radon) (K-Pop) (Cyborg)
with James Bisbee (Buzzsaw)
Local to global: IV
with Michael Gechter (Seismograph)
The extrapolation machine: honing estimators
with Dan Aaronson (Dano)
External validity in the long-run: labor supply from 1800-2010

with Miikka Rokkanen (The Rok)
and Miguel Urquiola (MiG)
External validity in RDD